Blogia
Nuestras Conversaciones, el blog de Gonzalo Prieto

Las Energias Renovables son el Futuro II

Las Energias Renovables son el Futuro II Desde la antigua Grecia a hoy

El uso pasivo de la energía solar se inició en un pasado muy lejano. En la antigua Grecia Sócrates señaló que la casa ideal debería ser fresca en verano y cálida en invierno, explicando que “en las casas orientadas al sur, el sol penetra por el pórtico en invierno, mientras que en verano el arco solar descrito se eleva sobre nuestras cabezas y por encima del tejado, de manera que hay sombra”. En la época de los romanos, la garantía de los derechos al sol quedó incorporada en la ley romana, y así, el Código de Justiniano, recogiendo códigos anteriores, señalaba que “si un objeto está colocado en manera de ocultar el sol a un heliocaminus, debe afirmarse que tal objeto crea sombra en un lugar donde la luz solar constituye una absoluta necesidad. Esto es así en violación del derecho del heliocaminus al sol”.
Arquímedes, 212 años antes de Cristo, según la leyenda, utilizó espejos incendiarios para destruir los barcos romanos que sitiaban Siracusa. Roger Bacon, en el siglo trece, propuso al Papa Clemente IV el empleo de espejos solares en las Cruzadas, pues “este espejo quemaría ferozmente cualquier cosa sobre la que se enfocara. Debemos pensar que el Anticristo utilizará estos espejos para incendiar ciudades, campos y armas”. En 1839, el científico francés Edmund Becquerel descubre el efecto fotovoltaico y en 1954 la Bell Telephone desarrolla las primeras células fotovoltaicas, aplicadas posteriormente por la NASA a los satélites espaciales Vanguard y Skylab, entre otros.
La llamada arquitectura bioclimática, heredera del saber de la arquitectura popular, es la adaptación de la edificación al clima local, reduciendo considerablemente el gasto en calefacción y refrigeración, respecto a la actual edificación. Es posible conseguir, con un consumo mínimo, edificios confortables y con oscilaciones de temperatura muy pequeñas a lo largo del año, aunque en el exterior las variaciones climáticas sean muy acusadas. El diseño, la orientación, el espesor de los muros, el tamaño de las ventanas, los materiales de construcción empleados y el tipo de acristalamiento, son algunos de los elementos de la arquitectura solar pasiva, heredera de la mejor tradición arquitectónica. Inversiones que rara vez superan el cinco por ciento del coste de la edificación, permiten ahorros energéticos de hasta un 80% del consumo, amortizándose rápidamente el sobrecoste inicial.
El uso de la energía solar en la edificación presupone la desaparición de una única tipología constructiva, utilizada hoy desde las latitudes frías del norte de Europa hasta el Ecuador. Si la vivienda no se construye adaptada al clima, calentarla o refrigerarla siempre será un grave problema que costará grandes cantidades de energía y dinero.

El colector solar

El colector solar plano, utilizado desde principios de siglo para calentar el agua hasta temperaturas de 80 grados centígrados, es la aplicación más común de la energía térmica del sol. Países como Alemania, Austria, Japón, Israel, Chipre o Grecia han instalado varios millones de unidades.
Los elementos básicos de un colector solar plano son la cubierta transparente de vidrio y una placa absorbente, por la que circula el agua u otro fluido caloportador. Otros componentes del sistema son el aislamiento, la caja protectora y un depósito acumulador. Cada metro cuadrado de colector puede producir anualmente una cantidad de energía equivalente a unos ochenta kilogramos de petróleo.
Las aplicaciones más extendidas son la generación de agua caliente para hogares, piscinas, hospitales, hoteles y procesos industriales, y la calefacción, empleos en los que se requiere calor a bajas temperaturas y que pueden llegar a representar más de una décima parte del consumo. A diferencia de las tecnologías convencionales para calentar el agua, las inversiones iniciales son elevadas y requieren un periodo de amortización comprendido entre 5 y 7 años, si bien, como es fácil deducir, el combustible es gratuito y los gastos de mantenimiento son bajos.
Más sofisticados que los colectores planos son los colectores de vacío y los colectores de concentración, más caros, pero capaces de lograr temperaturas más elevadas, lo que permite cubrir amplios segmentos de la demanda industrial e incluso producir electricidad. Los colectores solares de concentración lineal son espejos cilindroparabólicos, que disponen de un conducto en la línea focal por el que circula el fluido caloportador, capaz de alcanzar los 400 grados centígrados. Con tales temperaturas se puede producir electricidad y calor para procesos industriales. En Estados Unidos operan más de cien mil metros cuadrados de concentradores lineales, y la empresa “Luz Internacional” instaló en California seis centrales para producir electricidad, con una potencia de 354 MW eléctricos (1 MW=1.000 kW), y unos rendimientos satisfactorios. El coste del kWh asciende a 15 céntimos de dólar, todavía superior al convencional, pero interesante en numerosas zonas alejadas de la red de distribución que tengan buena insolación. Las perspectivas son halagüeñas, a pesar de algunos fracasos, como probó la quiebra de Luz en 1991 y su posterior venta, y hoy hay varios proyectos en marcha en España e India, entre otros países. El plan del gobierno prevé producir 180 ktep en el año 2010 de solar termoeléctrica, con una potencia instalada de sólo 200 megavatios y una producción de 458,9 GWh/año.
Los colectores puntuales son espejos parabólicos en cuyo foco se dispone un receptor, en el que se produce el calentamiento del fluido de transferencia, posteriormente enviado a una turbina centralizada, o se instala directamente un motor. Las llamadas centrales solares de torre central consisten en numerosos espejos de gran superficie (helióstatos) que, gracias a la orientación constante, concentran la radiación solar en un receptor de vapor situado en lo alto de una torre. El desarrollo de helióstatos de bajo coste, utilizando nuevos materiales como el poliéster, la fibra de vidrio o las membranas tensionadas de fibra de grafito y receptores más fiables y eficientes, abre nuevas posibilidades al empleo de la energía solar para la obtención de electricidad.

Células solares

La producción de electricidad a partir de células fotovoltaicas es aún seis veces más cara que la obtenida en centrales de carbón, pero hace tan sólo dos décadas era veinte veces más. En 1960 el coste de instalar un solo vatio de células fotovoltaicas, excluyendo las baterías, transformadores y otros equipos auxiliares, ascendía a 2.000 dólares; en 1975 era ya sólo 30 dólares y en 2004 va de 2,62 dólares a 4,25, dependiendo de la cantidad y el tipo de instalación. Si en 1975 el kWh costaba más de 7 euros, el precio actual está entre 0,3 y 0,6 euros, lo que permite que el empleo de células fotovoltaicas para producir electricidad en lugares alejados de las redes de distribución ya compita con las alternativas existentes, como generadores eléctricos a partir del petróleo.
Hoy, en Estados Unidos la producción de un kWh cuesta de 4 a 8 céntimos de dólar en una central de carbón, de 4 a 6 en los parques eólicos, de 5 a 10 en una de petróleo, de 12 a 15 en una central nuclear y de 25 a 40 céntimos utilizando células fotovoltaicas. En los próximos años se espera reducir el coste del kWh a 12 céntimos de euro antes de 2010 y a 4 céntimos para el año 2030. Claro que en los costes anteriores no se incluyen los resultados del deterioro causado al ambiente por las distintas maneras de producir la electricidad.
El efecto fotovoltaico, descubierto por Becquerel en 1839, consiste en la generación de una fuerza electromotriz en un dispositivo semiconductor, debido a la absorción de la radiación luminosa. Las células fotovoltaicas convierten la energía luminosa del sol en energía eléctrica, con un único inconveniente: el coste económico todavía muy elevado para la producción centralizada. Sin embargo, las células fotovoltaicas son ya competitivas en todos aquellos lugares alejados de la red y con una demanda reducida, como aldeas y viviendas sin electrificar, repetidores de televisión, balizas, agricultura, faros, calculadoras y otros bienes de consumo. A lo largo de toda la década el mercado fotovoltaico creció a ritmos anuales superiores al 40%, y ya hay más de 2.500 megavatios instalados en todo el mundo.
Actualmente la mayoría de las células fotovoltaicas son de silicio monocristalino de gran pureza, material obtenido a partir de la arena, muy abundante en la naturaleza. La purificación del silicio es un proceso muy costoso, debido a la dependencia del mercado de componentes electrónicos, que requiere una pureza (silicio de grado electrónico) superior a la requerida por las células fotovoltaicas. La obtención de silicio de grado solar, directamente del silicio metalúrgico, cuya pureza es del 98%, abarataría considerablemente los costes, al igual que la producción de células a partir del silicio amorfo u otros procedimientos, hoy en avanzado estado de investigación y cuyos resultados pueden ser decisivos en la próxima década

0 comentarios